Сварка алюминия. Пористость
Металлургические рекомендации по уменьшению пористости
Повышенная склонность алюминиевых сплавов к порообразованию является одним из главных затруднений на пути получения сварных соединений высокого качества. Некоторые ученые считают, что пористость больше определенного размера при определенном взаимном расположении отдельных пор существенно понижает прочность и пластичность сварных соединений. Поэтому в СССР и за рубежом проводятся работы по выяснению причин возникновения пористости и определению методов их предупреждения. Основной причиной пористости в алюминиевых сплавах является присутствие в них водорода. Кроме водорода, в сварочную ванну возможно попадание азота и кислорода. Азот практически не растворяется в алюминии, а дает нитрид алюминия, переходящий в шлак, и поэтому не оказывает существенного влияния на образование пористости. При сварке в защитных газах кислород в сварочную ванну обычно попадает в небольших количествах, так как содержание его в защитных газах строго ограничено. Кислород, попадающий в ванну, соединяется с алюминием в окисел А1203 и, очевидно, также не влияет на появление пористости в металле шва.
Легкий пластичный алюминий и алюминиевые сплавы используются в строительстве, аэрокосмической промышленности, машино-, судо- и автомобилестроении — в конструктивных элементах, турбинах, кузовных и корпусных деталях, трансмиссиях. Аргонная сварка алюминия применяется при производстве и ремонте, позволяет получать чистые швы и надежные сварные соединения при разной толщине металла.
Сварку полуавтоматом тонколистового металла ведут на короткой дуге — нижний предел для стали 0,7-1 мм и для алюминия и алюминиевых сплавов 2 мм. Она выполняется на низких сварочных токах, поэтому тепловложение в заготовку и размер ванны невелики. Однако для этого метода характерен крупнокапельный перенос, вне зависимости от используемой проволоки. Готовое изделие нужно зачищать.
Избыток газообразного водорода в металле объясняется повышением растворимости газов, особенно водорода, в жидком алюминии и скачкообразным уменьшением растворимости его в кристаллизующемся металле. Температура сварочной ванны в головной ее части достигает 1600—1700° С, а температура переносимой в столбе дуги капли еще выше; Установлено, что наивысшая растворимость водорода в алюминии имеет место при температуре 2050° С и достигает 20,9 см 3 на 100 г металла, т. е. объем растворенного водорода чрезвычайно велик.
Такой режим нагрева приводит к последующему созданию некоторого вредного внутреннего напряжения материала в зоне соединения. Однако это компенсируется почти двойной толщиной стенки полученного трубопровода в зоне соединения и большой площадью сварки (гораздо больше площади торца трубы при сварке встык).
Образование пористости зависит от чистоты исходного металла, качества подготовки под сварку поверхности свариваемого и присадочного материалов, чистоты защитных газов, состава защитной атмосферы, качества травления и полноты удаления продуктов травления, способа сварки, параметров сварки, вида переноса капель металла и других факторов.
Свариваемую внешнюю поверхность трубы рекомендуется подготовить с помощью калибратора и фаскоснимателя. Калибратор устраняет т.н. эллипсность трубы и, в случае необходимости, уменьшает ее внешний диаметр до нормы, при этом удаляя возможные загрязнения и оксидный слой.
Нагрев, неоднородность соединения, взаимодействие материалов – процесс сварки создает идеальную среду для быстрого развития коррозии. Коррозийное поражение приводит к деформации шва, нарушает прочность соединения, грозит потерей основных функций и полным разрушением конструкции.
TIG сварка
Образованию пористости сварных соединений способствует не только водород, попадающий в сварочную ванну с присадочным материалом, газами и из влаги, адсорбированной поверхностной окисной пленкой, но и водород, растворенный в металле при изготовлении полуфабрикатов. Внутренние напряжения создают направленный поток водорода в растянутые места решетки, и прогрессирующая сегрегация водорода в этих местах может привести к ослаблению сил сцепления и зарождению трещин.
К расчету силы сварочного тока подходят внимательно. Он имеет ключевое значение, так как влияет на производительность процесса и механические свойства шва. Характерные проблемы при слишком низких значениях тока — плохой поджиг дуги, залипание электрода, грубая чешуйчатость шва, сильное шлакообразование, несплавление с основным металлом. При излишне высоких токах электроды сгорают быстрее, есть риск прожечь тонкий металл, мешает сильное разбрызгивание.
4. Для уменьшения пористости наобходимо повышать чистоту присадочной проволоки. При этом следует стремиться к относительному уменьшению площади поверхности присадочной проволоки, т. е. применять присадочную проволоку возможно большего диаметра. Для получения сварных швов высокого качества необходима тщательная подготовка материалов перед сваркой. По методике суммарной оценки качества подготовки материалов к сварке, разработанной в Англии, две пластины размером 25 x 37 мм, толщиной 1,5 мм сваривают по большей стороне аргоно-дуговой сваркой и рассматривают качество металла в изломе.
Подбирать режимы сварки — скорость ведения электрода, силу тока для ММА, напряжение или длину дуги, скорость подачи проволоки, индуктивность MIG лучше опытным путем. При это надо понимать, как влияет каждый параметр на сварной шов, и уметь их правильно регулировать.
СП 40-102-200 рекомендует на концах труб снимать наружную фаску под углом 45° на 1/3 толщины стенки трубы с помощью т.н. фаскоснимателя. Для труб небольшого диаметра (до 40мм) этой рекомендацией обычно пренебрегают. Для труб диаметром 50мм и выше – пренебрегать не стоит. Фаскосниматель позволяет также снять внутреннюю фаску с торца трубы для уменьшения возможного внутреннего грата и риска уменьшить внутреннее сечение трубопровода в месте сварки.
В некоторых случаях в сварных соединениях из алюминиевых сплавов нарушается герметичность в околошовной зоне. Это явление наблюдается в сварных деталях малой толщины (до 1 мм). В деталях большей толщины негерметичности может не быть, однако в околошовной зоне отмечается вспучивание металла. Исследования показали, что причиной возникновения негерметичности в околошовной зоне является междендритная водородная микропористость, в некоторых случаях — сквозная. При нагреве сварочной дугой в околошовной зоне частично оплавляются границы зерен. Диффундирующий из основного металла к этим границам водород вытесняет расплавленную эвтектику, в результате чего в околошовной зоне образуется пористость, имеющая вид разветвленных каналов. Пористость такого типа опасна, так как часто не выявляется непосредственно после сваркипри контроле сварных швов, а открывается при эксплуатации сварных узлов.